Green Building Roundtable:

Peak Water – Building for Water and Energy Efficiency

April 15, 2011

Water Consumption

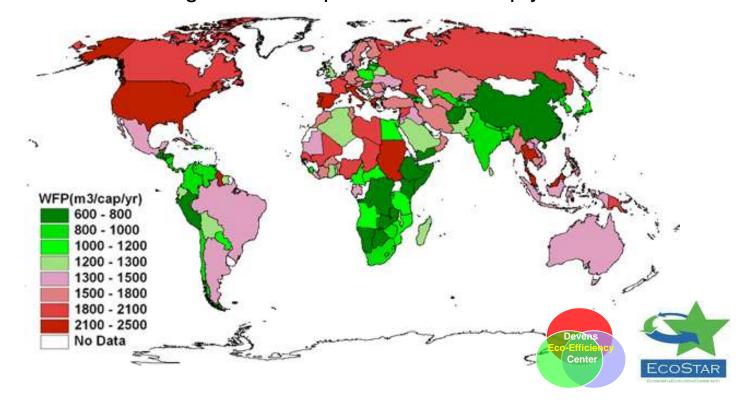
Domestic: residential, commercial, industrial, and public uses (street cleaning, fire fighting, parks, and public swimming pools)43 billion gallons per day.

Power Plants: energy production, cooling purposes 136 billion gallons of fresh water per day.

Agricultural: irrigation for crops, livestock, dairies, fish farms. **142 billion gallons** of fresh water per day.

Industrial & Mining: cooling, washing and rinsing.20 billion gallons of fresh water per day.

What's the Problem?


- Limitless supply of water?
- Droughts, floods, climate shifts, growing populations, increasing consumption
- Climate refugees
- Abundance, waste
- 3,700 BILLION gallons more water extracted than returned to the natural water system
- Ipswich and Charles River basins demand exceeds supply water use restrictions.
- Regional impacts.
- Flooding dead zones

Water Consumption

- Global average water footprint 1240 m3/yr/cap.
- USA the average water footprint 2500 m3/cap/yr.
- China the average water footprint 700 m3/cap/yr.

"Peak Water"

- Extraction/Depletion from a source faster than it can be replenished
- Peak oil and Peak Water Global vs. regional
- Global impacts on industry and supply chains (risk)
- Peak "ecological" Water point past which a watershed's water supply is depleted, causing irreversible damage to local ecosystems that depend on it. (human-caused desertification example).
- Supplies diminish while demand grows triple-bottom line impacts
- Future water wars?

Water and Energy Efficiency

- Water = Energy
- Extracting, processing, treating, transporting and consuming freshwater
- Municipal budgets and taxes

(planning, engineering, construction, operation, maintenance, treatment, wastewater facilities costs, piping, metering, leak detection, compliance costs, salaries, protection costs, pensions, health care, staff training, and public education....)

But Wait! The glass is half full!

- Reduce, Reuse and Recycle
- Efficiency and Innovation doing more with less
- Regulatory Agencies reducing barriers for reuse
- Conservation = enhanced water quality, aquifer and stream recharge
- septic systems and wastewater treatment plants function more efficiently and last longer
- more water retained in the natural environment dilutes pathogens and other pollutants, buffers waterways from excessive heating or freezing
- investments in efficiency/conservation provide long term savings (compared to cost of developing/treating new water supply sources and wastewater treatment)
- Triple bottom-line impacts natural resource protection, energy efficiency and enhanced QOL.

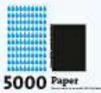
Typical Water Efficiency Examples

- System water audits/metering
- Dual flush toilets (1.6 gpf 1.1 gpf 0.8gpf)
- Low-flow fixtures (showerheads, aerators 2.5gpm 1.8 0.5gpm),
- Waterless urinals (1.0gpf 0.0 gpf)
- High efficiency appliances
- Water Efficient Landscaping
- Moisture sensor irrigation
- Compost and mulch

Water Footprinting

- Like electricity, carbon and GHG's can't reduce what we don't measure;
- How much and what kind?
- Making products, materials, buildings and operations
- Water = energy GHG impacts


WATER FOOTPRINT virtual water FOOTPRINT embedded in products



Water Footprinting

http://www.allianceforwaterefficiency.org/WorkArea/linkit.aspx?LinkIdentifier=id&ItemID=2212

Water Reuse Regulations in MA

- Greywater Reuse Filtration, disinfection, overflow protection, separate tank, dual plumbing - \$\$\$\$\$
- Rainwater Reuse significantly fewer requirements

MADEP Water Reuse Regulations

MA DEP Water Reuse Regulations

314 CMR 20.00: Reclaimed Water Permit Program and Standards

Definition: Domestic wastewater treated to a level beneficial for reuse Reduce microbial and chemical constituents (public health)
Interim guidelines developed in 1999 - very limited (irrigation ,golf courses)
Increasing water demands, protection of stressed public water supplies
March 2009 – New Program and Standards released

DEP Water Reuse Regulations

314 CMR 20.00: Reclaimed Water Permit Program and Standards

Expands list of potential uses and creates a system of classifications:

Class A – Contact with public likely (golf course, parks, playgrounds, athletic fields, toilet flushing)

Class B – Contact with public less likely (sod farms, non-edible crop irrigation, nurseries, cooling water)

Class C – No public contact (industrial process water, forestry)

Highest standards apply to uses with greatest potential for public exposure

Establishes effluent standards

Consistent with national standards

DEP Water Reuse Regulations

314 CMR 20.00: Reclaimed Water Permit Program and Standards

http://www.mass.gov/dep/service/regulations/314cmr20.pdf

MA Case Study

Wrentham Village Premium Outlets

- 575,000-square-foot outlet center, a 550-seat food court, mall management offices, and a cinema
- onsite wastewater treatment plant recycle wastewater as flush water for the toilets
- subsurface disposal recharging groundwater.
- Treatment using a trash trap, an equalization chamber, a series of aerobic digestion chambers and a membrane filtration system to separate solids from liquids.
- Additional treatment through carbon absorption and disinfection (UV and O³ technologies).
- BOD of < 30 milligrams per liter, TSS of < 10 milligrams per liter, total nitrogen of < 10 milligrams per liter, fecal coliform of < 100 organisms per 100 milliliters, turbidity of < 5 nephelometric turbidity units, and pH of 6 to 9.

Solaire Battery Park, NYC

- 293-unit building
- Reuse water stored in individual reservoirs in basement of each building
- distributed based on demand.
- Non-potable water distribution system draws water from the reservoirs, which are then replenished with
- additional reuse water from the treatment process.
- toilet flushing, cooling, laundry, and irrigation.

Solaire

Recycles up to 25,000 GPD:

9,000 GPD toilet flush water 11,500 GPD cooling tower make-up 6,000 GPD landscape irrigation

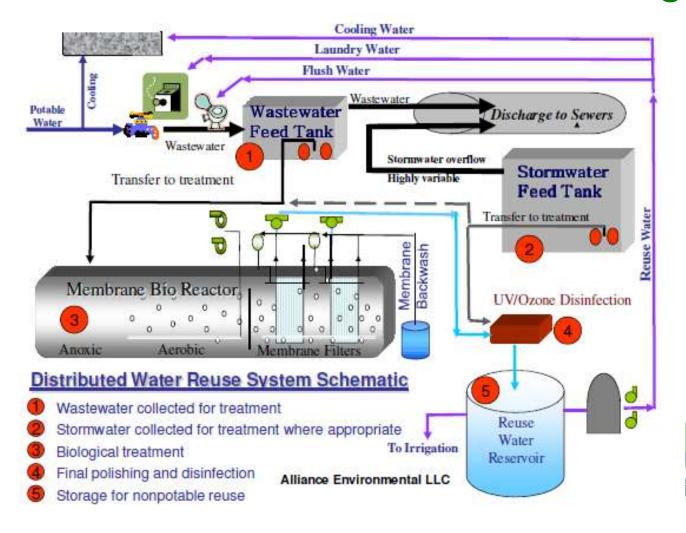
Advanced membrane bioreactor system:

35% less overall energy consumption 65% less energy at peak demand 50% less potable water used than other high rise buildings of same size

Rainwater collection system irrigates 10,000 square feet of rooftop gardens

Treated Effluent in storage tanks in Basement

Solaire


- LEED Gold
- 100% of wastewater treated
- No potable water use outside
- 5000 gal/day of treated effluent to public parks
- Uses 50% less potable water than conventional
- 88% water use reduction inside

Membrane Bioreactor Technology

Innovation – One Bryant Park, NYC

- LEED Platinum (21,000,000 sq.ft.)
- Greywater and rainwater reuse toilet flushing and cooling
- Low-energy treatment filtration/disinfection
- Capturing kinetic energy of greywater and rainwater – 52 stories
- Gravity pressure zones every 10 stories
- Basement ice

Water Efficiency Resources

EPA – Water Sense Program

http://www.epa.gov/WaterSense/

Energy Star Portfolio Manager

www.energystar.gov/index.cfm?c...bus_portfoliomanager

Solaire - Battery Park Case Study

EPA Municipal Rainwater Harvesting Guidelines

Alliance for Water Efficiency (CII indoor and Outdoor)

http://www.allianceforwaterefficiency.org/Commercial Institution al_and_Industrial_Library_Content_Listing.aspx

Water Efficiency Resources

Peak water and peak ecological water video:

http://www.youtube.com/watch?v=Rm7lxwKgO5l

Peak Water vs. Peak Oil

http://www.worldwater.org/data20082009/ch01.pdf

US Green Building Council

http://www.usgbc.org/

MA Water Conservation Standards

http://www.mass.gov/Eoeea/docs/eea/wrc/water_conservation_standards.pdf

